Sox17 Regulates Insulin Secretion in the Normal and Pathologic Mouse β Cell

نویسندگان

  • Diva Jonatan
  • Jason R. Spence
  • Anna M. Method
  • Matthew Kofron
  • Katie Sinagoga
  • Leena Haataja
  • Peter Arvan
  • Gail H. Deutsch
  • James M. Wells
چکیده

SOX17 is a key transcriptional regulator that can act by regulating other transcription factors including HNF1β and FOXA2, which are known to regulate postnatal β cell function. Given this, we investigated the role of SOX17 in the developing and postnatal pancreas and found a novel role for SOX17 in regulating insulin secretion. Deletion of the Sox17 gene in the pancreas (Sox17-paLOF) had no observable impact on pancreas development. However, Sox17-paLOF mice had higher islet proinsulin protein content, abnormal trafficking of proinsulin, and dilated secretory organelles suggesting that Sox17-paLOF adult mice are prediabetic. Consistant with this, Sox17-paLOF mice were more susceptible to aged-related and high fat diet-induced hyperglycemia and diabetes. Overexpression of Sox17 in mature β cells using Ins2-rtTA driver mice resulted in precocious secretion of proinsulin. Transcriptionally, SOX17 appears to broadly regulate secretory networks since a 24-hour pulse of SOX17 expression resulted in global transcriptional changes in factors that regulate hormone transport and secretion. Lastly, transient SOX17 overexpression was able to reverse the insulin secretory defects observed in MODY4 animals and restored euglycemia. Together, these data demonstrate a critical new role for SOX17 in regulating insulin trafficking and secretion and that modulation of Sox17-regulated pathways might be used therapeutically to improve cell function in the context of diabetes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pancreatic Differentiation of Sox 17 Knock-in Mouse Embryonic Stem Cells in Vitro

The way to overcome current limitations in the generation of glucose-responsive insulin-producing cells is selective enrichment of the number of definitive endoderm (DE) progenitor cells. Sox17 is the marker of mesendoderm and definitive endoderm. The aim of the present research was to study the potential of Sox17 knock-in CGR8 mouse embryonic stem (ES) cells to differentiate into insulin produ...

متن کامل

The zinc finger protein ZBTB20 regulates transcription of fructose-1,6-bisphosphatase 1 and β cell function in mice.

BACKGROUND & AIMS Fructose-1,6-bisphosphatase (FBP)-1 is a gluconeogenic enzyme that regulates glucose metabolism and insulin secretion in β cells, but little is known about how its transcription is controlled. The zinc finger protein ZBTB20 regulates glucose homeostasis, so we investigated its effects on expression of FBP-1. METHODS We analyzed gene expression using real-time reverse-transcr...

متن کامل

Salvianolic acid B improves insulin secretion from interleukin 1β-treated rat pancreatic islets: The role of PI3K-Akt signaling

Background and Objective: Oxidative stress induced by proinflammatory cytokines such as IL-1β plays a major role in β-cell destruction in diabetes type 1. Salvianolic acid B (Sal B) is a polyphenolic compound with antioxidant and protective effects. Thus, objective of this study was to assess the protection exerted by Sal B on isolated rat islets exposed to IL-1β and to investigate an underlyin...

متن کامل

Fasting-Mimicking Diet Promotes Ngn3-Driven β-Cell Regeneration to Reverse Diabetes

Stem-cell-based therapies can potentially reverse organ dysfunction and diseases, but the removal of impaired tissue and activation of a program leading to organ regeneration pose major challenges. In mice, a 4-day fasting mimicking diet (FMD) induces a stepwise expression of Sox17 and Pdx-1, followed by Ngn3-driven generation of insulin-producing β cells, resembling that observed during pancre...

متن کامل

miR-33a Modulates ABCA1 Expression, Cholesterol Accumulation, and Insulin Secretion in Pancreatic Islets

Changes in cellular cholesterol affect insulin secretion, and β-cell-specific deletion or loss-of-function mutations in the cholesterol efflux transporter ATP-binding cassette transporter A1 (ABCA1) result in impaired glucose tolerance and β-cell dysfunction. Upregulation of ABCA1 expression may therefore be beneficial for the maintenance of normal islet function in diabetes. Studies suggest th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014